Flat Peptides

Marco Crisma, ${ }^{\dagger}$ Fernando Formaggio, ${ }^{\dagger}$ Claudio Toniolo, ${ }^{*, \dagger}$ Taichi Yoshikawa, ${ }^{\dagger}$ and Tateaki Wakamiya**

Contribution from the Biopolymer Research Centre, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy, and Department of Chemistry, Faculty of Science and Technology, Kinki University, Osaka 577, 8502 Japan
Received December 7, 1998

Abstract

We have synthesized by solution methods the first homopeptide series, $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}-\mathrm{OMe}(n=$ $1-6)$, based on a $\mathrm{C}^{\alpha, \beta}$-didehydro- α-amino acid, to determine the preferred conformation of this residue, characterized by an $\mathrm{sp}^{2} \alpha$-carbon atom and the smallest side chain. To this aim, we have exploited FTIR absorption and ${ }^{1} \mathrm{H}$ NMR techniques in solution and X-ray diffraction in the crystal state. Our investigation shows that a multiple, consecutive, fully extended conformation (2.0_{5}-helix) largely predominates for all oligomers in deuteriochloroform solution and occurs in the crystal state for the monomer, dimer, and trimer as well. These peptide molecules are completely flat, including the amino acid side chains, and form planar sheets. This novel peptide structure is stabilized by two types of intramolecular H-bonds, $\mathrm{N}_{i}-\mathrm{H}^{\prime} \cdots \mathrm{O}_{i}=\mathrm{C}^{\prime}{ }_{i}$ (typical of the 2.00_{5}-helix) and $\mathrm{C}^{\beta}{ }_{i+1}-\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}^{\prime}{ }_{i}$ (characteristic of Δ Ala peptides). The results obtained are compared with those of the oligopeptides based on the related C^{β}-substituted, $\mathrm{C}^{\alpha, \beta}$-didehydro- α-amino acid residues.

Introduction

Identification of peptide backbones with new, well-defined, regular secondary structural elements (helices, sheets, and turns) is of outmost importance in the design of predetermined, simple structural and functional motifs with potential applications in biochemistry and materials science. ${ }^{1}$

Among noncoded α-amino acids, the class of $\mathrm{C}^{\alpha, \beta}$-didehydro-$\alpha$-amino acids ($\triangle \mathrm{AAs}$) is of particular interest. Both electronic and steric factors play important roles in directing the conformational properties of didehydropeptides. ${ }^{2}$ More specifically, a variety of recent studies has unambiguously recognized the strong tendency of the conformationally constrained, C^{β} substituted, γ-branched residues of this class Δ^{Z} Phe and $\Delta^{\mathrm{Z}}{ }_{-}$ Leu to stabilize β-turns ${ }^{3}$ in short model compounds and to nucleate the 3_{10}-helical structure ${ }^{4}$ in longer peptides. ${ }^{2,5}$ On the other hand, only few and nonsystematic crystal-state ${ }^{2,6}$ and

[^0]solution ${ }^{2,7}$ experimental investigations have been devoted to the conformational preference of the simplest residue of this class, Δ Ala. In addition, they have been restricted to small compounds such as linear derivatives ("monopeptides") and dipeptides, the latter, however, containing only a single Δ Ala residue [the only exception is represented by the X-ray diffraction analysis of the cyclic homodipeptide $c(\Delta \mathrm{Ala})_{2},{ }^{6 \mathrm{a}}$ the conformation of which, however, is strongly forced to be folded by the constraints imposed by the small ring size]. All of these studies provide evidence that the fully extended (C_{5}) conformation $^{3 \mathrm{~b}, 8}$ is preferred by a single Δ Ala residue. A number of theoretical analyses confirmed this conclusion for short ($n<$ 6) Δ Ala homooligomers. ${ }^{2,9}$ However, recent conformational energy calculations predicted that the 3_{10}-helix is the most stable structure in longer homooligopeptides of this family. ${ }^{9 a-c}$

In an attempt to contribute to solving this issue, we have synthesized a terminally blocked, complete, monodispersed Δ Ala homooligomeric series, namely $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}$ - OMe (where $p \mathrm{BrBz}$ is p-bromobenzoyl and OMe is methoxy), from monomer to hexamer ($n=1-6$) (Figure 1). We have carried out a conformational analysis in solution using FTIR absorption and ${ }^{1} \mathrm{H}$ NMR on the complete series and a X-ray diffraction

[^1]Table 1. Physical and Analytical Properties of the $\mathrm{A}_{2} \operatorname{pr}(\mathrm{Z})$ and $\Delta \mathrm{Ala}$ Homopeptides

compd	yield (\%)	melting point (${ }^{\circ} \mathrm{C}$)	recryst solvent ${ }^{b}$	$[\alpha]^{25}{ }_{\mathrm{D}}(\mathrm{deg})^{c}$	FAB-MS $(\mathrm{m} / \mathrm{z})^{e}$
Boc-[$\left.\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{2}-\mathrm{OMe}$	83	119-122	EtOAc/hexane	-0.6	$573 f / 573.3^{g}$
Boc-[$\left.\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{3}-\mathrm{OMe}$	84	153-155	$\mathrm{CHCl}_{3} /$ hexane	-18.0	793/793.3
Boc-[$\left.\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{4}-\mathrm{OMe}$	86	193-196	$\mathrm{CHCl}_{3} /$ hexane	$-23.1{ }^{\text {d }}$	1013/1013.4
Boc-[$\left.\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{5}-\mathrm{OMe}$	99	218-220 ${ }^{\text {a }}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$-25.8{ }^{\text {d }}$	1234/1233.5
Boc-[$\left.\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{6}-\mathrm{OMe}$	99	$236-239^{\text {a }}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$-20.6{ }^{\text {d }}$	1454/1453.6
$p \mathrm{BrBz}-\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})-\mathrm{OMe}$	92	113-116	$\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O} /$ hexane	+13.4	435/435.1
$p \mathrm{BrBz}-\left[\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{2}-\mathrm{OMe}$	81	195-197	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$-24.3{ }^{\text {d }}$	655/655.1
$p \mathrm{BrBz}-\left[\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{3}-\mathrm{OMe}$	93	213-215	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$-34.9{ }^{\text {d }}$	875/875.1
$p \mathrm{BrBz}-\left[\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{4}-\mathrm{OMe}$	88	234-242 ${ }^{\text {a }}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$-38.2{ }^{\text {d }}$	1095/1095.2
$p \mathrm{BrBz}-\left[\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{5}-\mathrm{OMe}$	97	250-259 ${ }^{\text {a }}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$-38.1{ }^{\text {d }}$	1315/1315.3
$p \mathrm{BrBz}-\left[\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{6}-\mathrm{OMe}$	90	255-264 ${ }^{\text {a }}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	-35.6^{d}	1535/1535.4
$p \mathrm{BrBz}-\triangle \mathrm{Ala}-\mathrm{OMe}$	74	94-96	EtOAc/hexane	-	284/284.2
$p \mathrm{BrBz-}(\triangle \mathrm{Ala})_{2}-\mathrm{OMe}$	65	119-122	EtOAc/hexane	-	353/353.2
$p \mathrm{BrBz-}(\triangle \mathrm{Ala})_{3}-\mathrm{OMe}$	62	$>210^{a}$	$\mathrm{CHCl}_{3} /$ hexane	-	422/422.2
$p \mathrm{BrBz}-(\triangle \mathrm{Ala})_{4}-\mathrm{OMe}$	58	$>210^{a}$	CHCl_{3} /hexane	-	491/491.1
$p \mathrm{BrBz}-(\triangle \mathrm{Ala})_{5}-\mathrm{OMe}$	30	$>210^{a}$	$\mathrm{CHCl}_{3} /$ hexane	-	560/560.1
$p \mathrm{BrBz-}(\triangle \mathrm{Ala})_{6}-\mathrm{OMe}$	22	$>210^{a}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	-	629/629.1

${ }^{a}$ With decomposition. ${ }^{b} \mathrm{EtOAc}$, ethyl acetate; DMF, N, N^{\prime}-dimethylformamide; Et 2 O , diethyl ether. ${ }^{c} c 1.0, \mathrm{CHCl}_{3} .{ }^{d} c 1.0, \mathrm{DMF} .{ }^{e}(\mathrm{M}+\mathrm{H})^{+}$. ${ }^{f}$ Found. ${ }^{g}$ Calculated.

A

$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}-\quad \Delta^{2}$ Phe residue
$R=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\Delta^{2}$ Leu residue

B

Figure 1. (A) Δ^{Z} Phe and Δ^{Z} Leu residues. (B) $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}-\mathrm{OMe}$ ($n=1-6$) homopeptides investigated in this work.
investigation on the crystalline monomer, dimer, and trimer. The data obtained strongly support the view that the fully extended, 2.05 -helix is the conformation preferred by the $\Delta \mathrm{Ala}$ homopeptides to the hexamer level. A preliminary account of the results of this work has been reported. ${ }^{10}$

It is also worth mentioning that these findings may have additional implications as $\triangle \mathrm{AA}$ residues are frequently found in naturally occurring peptides of microbial and fungal metabolite origins, ${ }^{11,12}$ and they are also constituents of a few proteins. In particular, it has been shown that Δ Ala is posttranslationally formed from Ser in the active site of the enzyme histidine ammonia-lyase, ${ }^{13}$ and segments of consecutive 1-4 $\Delta \mathrm{Ala}$ residues are found in a number of thiopeptide antibiotics. ${ }^{12}$

Materials and Methods

Synthesis and Characterization of Peptides. Melting points were determined with a Yanaco model MP-J3 (Kyoto, Japan) apparatus and are uncorrected. Silica gel column chromatography was carried out with Merck (Darmstadt, Germany) silica gel 60 (70-230 mesh). Analytical ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Jeol model JNM-EX (Tokyo, Japan) $270-\mathrm{MHz}$ or a Bruker model AM 400 (Karlsruhe, Germany) spectrometer. Peptide mass numbers were determined by fast-atom bombardment mass spectrometry (FAB-MS) using a Jeol model JMSHX 100 spectrometer. Specific optical rotations were measured with a Horiba model SEPA-200 polarimeter (Kyoto, Japan).

[^2]The physical and analytical properties of the newly synthesized $\mathrm{A}_{2^{-}}$ $\operatorname{pr}(\mathrm{Z})\left(\mathrm{A}_{2} \mathrm{pr}, \alpha, \beta\right.$-diaminopropionic acid; Z , benzyloxycarbonyl) and Δ Ala homopeptides are listed in Table 1. All peptides were also chemically homogeneous by ${ }^{1} \mathrm{H}$ NMR spectrometry. Typical procedures were the following.
$\boldsymbol{p B r B z}_{\mathbf{-}} \mathbf{-} \mathbf{2} \mathbf{p r}(\mathbf{Z})-\mathrm{OMe}$. To a solution of $\mathrm{HCl} \cdot \mathrm{H}-\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})$-OMe (1.20 g, 4.15 mmol) in N, N^{\prime}-dimethylformamide (DMF) (5 mL) were added $p \mathrm{BrBz-Cl}(0.913 \mathrm{~g}, 4.15 \mathrm{mmol})$ and triethylamine (TEA) $(1.27 \mathrm{~mL}$, 9.13 mmol) in 10 equal and alternate portions over 100 min at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then overnight at room temperature. The precipitated TEA $\cdot \mathrm{HCl}$ was filtered off, and the filtrate was concentrated in vacuo. The residue was triturated with water, and the resulting crystalline product was collected by filtration, followed by recrystallization from ethyl acetate (EtOAc) - diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)-$ hexane.
p BrBz- Δ Ala-OMe. To a solution of $p \mathrm{BrBz}-\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})-\mathrm{OMe}(0.750$ $\mathrm{g}, 1.72 \mathrm{mmol})$ in acetic acid $(\mathrm{AcOH})(2 \mathrm{~mL})$ was added $25 \% \mathrm{HBr} /$ $\mathrm{AcOH}(5 \mathrm{~mL})$ at room temperature. After being stirred for 2 h , the reaction mixture was concentrated in vacuo. The residue was crystallized by trituration with $\mathrm{Et}_{2} \mathrm{O}$, and the $p \mathrm{BrBz}-\mathrm{A}_{2} \mathrm{pr}-\mathrm{OMe}$ hydrobromide was used for the subsequent reaction without further purification. To a solution of the above-mentioned hydrobromide ($0.640 \mathrm{~g}, 1.67 \mathrm{mmol}$) in a methanol $(\mathrm{MeOH}) / \mathrm{DMF}(1: 3)$ mixture (64 mL) were added $\mathrm{CH}_{3} \mathrm{I}$ $(4.0 \mathrm{~mL}, 64.2 \mathrm{mmol})$ and $\mathrm{KHCO}_{3}(3.21 \mathrm{~g}, 32.1 \mathrm{mmol})$. After the reaction mixture was stirred for 6 h at room temperature, EtOAc (200 mL) was added. The precipitated insoluble material was filtered off, and the filtrate was concentrated in vacuo. EtOAc (100 mL) and water $(20 \mathrm{~mL})$ were added to the residue. The EtOAc layer was washed with water ($20 \mathrm{~mL} \times 3$), 10% aqueous citric acid $(20 \mathrm{~mL} \times 3)$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL} \times 3)$, and brine ($20 \mathrm{~mL} \times 3$). The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo below $25^{\circ} \mathrm{C}$. The residue was crystallized by trituration with hexane. The crystalline product was collected by filtration and recrystallized from EtOAc/hexane.

Boc- $\left[\mathrm{A}_{2} \mathbf{p r}(\mathrm{Z})\right]_{2}-\mathrm{OMe}$. To a stirred solution of Boc-A $\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})$-OSu (Boc, tert-butyloxycarbonyl; OSu, N-hydroxysuccinimido) ${ }^{14}(1.50 \mathrm{~g}$, $3.44 \mathrm{mmol})$ and $\mathrm{HCl} \cdot \mathrm{H}-\mathrm{A}_{2} \operatorname{pr}(\mathrm{Z})-\mathrm{OMe}(0.994 \mathrm{~g}, 3.27 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ was added TEA $(0.474 \mathrm{~mL}, 3.44 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and overnight at room temperature, the precipitated TEA $\cdot \mathrm{HCl}$ was filtered off, and the filtrate was concentrated in vacuo. The residue was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ and washed with 10% aqueous citric acid ($5 \mathrm{~mL} \times 3$), brine ($5 \mathrm{~mL} \times$ 3), saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL} \times 3)$, and brine $(5 \mathrm{~mL} \times 3)$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was crystallized by trituration with hexane. The crystalline product was collected by filtration and recrystallized from EtOAc/hexane.
(14) Teshima, T.; Nomoto, S.; Wakamiya, T.; Shiba, T. Bull. Chem. Soc. Jpn. 1977, 50, 3372-3380.

Table 2. Crystallographic Data and Diffraction Parameters for the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}$ - $\mathrm{OMe}(n=1-3)$ Homopeptides

parameter	monopeptide	dipeptide	tripeptide
empirical formula	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{Br}$	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Br}$
formula weight (amu)	284.1	353.2	422.2
color, habit	colorless, plates	colorless, plates	colorless, plates
crystal system	triclinic	triclinic	monoclinic
space group	$P \overline{1}$	$P \overline{1}$	$P 2{ }_{1} / c$
$a(\mathrm{~A})$	8.899(1)	9.937(2)	9.885(1)
$b(\AA)$	13.709(2)	11.187(2)	6.779(1)
$c(\AA)$	4.895(1)	6.743(1)	26.339(2)
α (deg)	96.2(1)	102.3(1)	90.0
β (deg)	89.9(1)	94.2(1)	98.3(1)
γ (deg)	107.2(1)	93.7(1)	90.0
$V\left(\AA^{3}\right)$	566.8(2)	727.9(2)	1746.5(3)
Z (molecules/unit cell)	2	2	4
density (calcd) (g/cm ${ }^{3}$)	1.665	1.611	1.606
absorption coefficient (mm^{-1})	3.616	2.840	2.388
$F(000)$	284	356	856
collected reflections	2752	3525	4316
independent reflections	$2749[R($ int $)=0.0164]$	$3513[R($ int $)=0.0188]$	$4207[R($ int $)=0.0291]$
observed reflections [$I \geq 2 \sigma(I)$]	1170	1190	2071
solved by	SHELXS 86	SHELXS 86	SHELXS 86
refined by	SHELXL 93	SHELXL 93	SHELXL 93
final R indices [$I \geq 2 \sigma(I)$]	$R 1=0.0562, w R 2=0.1383$	$R 1=0.0668, w R 2=0.1620$	$R 1=0.0432, w R 2=0.1069$
final R indices (all data)	$R 1=0.1596, w R 2=0.1838$	$R 1=0.2254, w R 2=0.2386$	$R 1=0.1214, w R 2=0.1390$
temperature (K)	293(2)	293(2)	293(2)
radiation (λ)	Mo K ${ }^{\text {(} 0.71073 ~ \AA ̊) ~}$	Mo K ${ }^{\text {(} 0.71073 ~ \AA ̊) ~}$	Mo K α (0.71073 Å)
scan method	$\theta-2 \theta$	$\theta-2 \theta$	$\theta-2 \theta$
θ range (deg)	2-28	2-28	2-28
index ranges	$\begin{aligned} -11 & \leq h \leq 11,-18 \leq k \leq 17, \\ 0 & \leq l \leq 6 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 13,-14 \leq k \leq 14, \\ & -1 \leq l \leq 8 \end{aligned}$	$\begin{aligned} -13 & \leq h \leq 12,0 \leq k \leq 8, \\ 0 & \leq l \leq 34 \end{aligned}$
refinement method	full-matrix least-squares on F^{2}	full-matrix least-squares on F^{2}	full-matrix least-squares on F^{2}
data/restraints/parameters	2749/0/133	3510/0/179	4207/0/223
goodness of fit on F^{2}	0.940	0.854	0.869
crystallization solvent	acetone	acetone	acetone
crystal size (mm)	$0.2 \times 0.2 \times 0.1$	$0.4 \times 0.4 \times 0.2$	$0.4 \times 0.2 \times 0.1$
$\Delta \rho_{\text {max }}$ and $\Delta \rho_{\text {min }}(\mathrm{e} \cdot \mathrm{A})$	0.478/-0.760	0.673/-0.698	0.530/-0.416

$\mathbf{H C l} \cdot \mathbf{H}-\left[\mathbf{A}_{2} \mathbf{p r}(\mathbf{Z})\right]_{2} \mathbf{- O M e}$. To a solution of Boc-[$\left.\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{2}-\mathrm{OMe}(1.53$ g, 2.67 mmol) in EtOAc (25 mL) was added $4 \mathrm{M} \mathrm{HCl} / \mathrm{EtOAc}(20 \mathrm{~mL})$ at room temperature. After being stirred for 1 h , the mixture was concentrated in vacuo, and the residue was crystallized by trituration with $\mathrm{Et}_{2} \mathrm{O}$. The resulting ester hydrochloride was used for the subsequent reaction without further purification.

FTIR Absorption. The FTIR absorption spectra were recorded using a Perkin-Elmer model 1720 X (Norwalk, CT) FTIR spectrophotometer, nitrogen flushed, equipped with a sample-shuttle device, at $2 \mathrm{~cm}^{-1}$ nominal resolution, averaging 100 scans. Solvent (baseline) spectra were obtained under the same conditions.Cells with path lengths of $0.1,1.0$, and 10 mm (with CaF_{2} windows) were used. Spectrograde deuteriochloroform $(99.8 \%$ D) was purchased from Fluka (Buchs, Switzerland).

NMR Spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker model AM 400 spectrometer. Measurements were carried out in deuteriochloroform (99.96% D; Acros, Geel, Belgium) and deuterated dimethyl sulfoxide $\left(99.96 \% \mathrm{D}_{6}\right.$; Stohler, Waltham, MA) with tetramethylsilane as the internal standard. The free radical 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) was purchased from Sigma (St. Louis, MO).

X-ray Diffraction. Data collection was performed using a Philips PW 1100 (Eindhoven, The Netherlands) four-circle diffractometer. Unit cell determination was carried out by least-squares refinement of the setting angles of 25 high-angle reflections accurately centered using Mo K α radiation. All of the structures were solved by direct methods, using the SHELXS $86^{15 a}$ program. Refinement was carried out on F^{2}, with all non-H atoms anisotropic, by application of the SHELXL $93^{15 b}$ program. The H atoms of the three peptides were calculated at idealized positions, and during the refinement they were allowed to ride on their carrying atom, with $U_{\text {iso }}$ set equal to 1.2 (or 1.5 for the methyl groups)
(15) (a) Sheldrick, G. M. In SHELXS 86. Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1990. (b) Sheldrick, G. M. In SHELXL 93. Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1993.
times the $U_{\text {eq }}$ of the attached atoms. Crystal data and diffraction parameters are listed in Table 2.

Results and Discussion

Peptide Synthesis. Since $\triangle \mathrm{AAs}$ are relatively unstable compounds, their incorporation at an early stage in peptide synthesis may limit later reactions. ${ }^{11}$ Therefore, the methodology we report here allows conversion to the $\Delta \mathrm{AAs}$ on completion of peptide synthesis. Saturated α-amino acids such as Ser, Cys, and $\mathrm{A}_{2} \mathrm{pr}$ are commonly exploited as precursors of $\Delta \mathrm{Ala}$ residues. ${ }^{11}$

In the synthesis of our $(\Delta \mathrm{Ala})_{n}$ homopeptides, we took advantage of Shiba's procedure ${ }^{16 a}$ based on the Hofmann degradation of $\mathrm{A}_{2} \mathrm{pr}$ as shown below:

The Z-protecting group for the β-amino function of $\mathrm{A}_{2} \mathrm{pr}$ was removed from the intermediate $\mathrm{A}_{2} \operatorname{pr}(\mathrm{Z})$ homopeptide with 25% $\mathrm{HBr} / \mathrm{AcOH}^{16 \mathrm{~b}}$ prior to the Hofmann degradation. The resulting free side-chain amino group was then quaternized according to the Chen-Benoiton method $\left(\mathrm{CH}_{3} \mathrm{I} / \mathrm{KHCO}_{3}\right) .{ }^{16 c}$ The intermediate N^{β}-trimethyl- A_{2} pr peptides were not isolated during the synthetic procedure.

[^3]
Chart 1

	$n=1$
	$\mathrm{n}=2$
$\mathrm{HCl} \cdot \mathrm{H}-\left[\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{\mathrm{n}}-\mathrm{OMe}$	n
	$\mathrm{n}=$
pBrBz-CI, TEA	$n=$
	$n=1$ $n=2$
γ	$\mathrm{n}=3$
$p \mathrm{BrBz}-\left[\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})\right]_{\mathrm{n}}-\mathrm{OMe}$	$n=4$ $n=5$
	$n=6$
1) $25 \% \mathrm{HBr} / \mathrm{AcOH}$	
\downarrow	$n=1$ $n=2$
	$n=3$
$p \mathrm{BrBz}-(\triangle \mathrm{Ala})_{h}-\mathrm{OMe}$	$n=4$ $n=5$
	$\mathrm{n}=$

The preparation of the $\mathrm{A}_{2} \operatorname{pr}(\mathrm{Z})$ homopeptides was achieved by using the C -activated $\mathrm{Boc}-\mathrm{A}_{2} \mathrm{pr}(\mathrm{Z})-\mathrm{OSu}$ derivative. ${ }^{14} \mathrm{Re}-$ moval of the N^{α}-protecting Boc group was obtained by mild acidolysis. Blocking of the N^{α}-amino function with the $p \mathrm{BrBz}$ moiety was achieved with $p \mathrm{BrBz}-\mathrm{Cl}$ in the presence of a base (TEA). The $p \mathrm{BrBz}$ group is useful in that it contains a heavy atom (Br) which helps crystallographers in solving the phase problem during the X-ray diffraction analysis. The final products were characterized by melting point determination, polarimetry, ${ }^{1} \mathrm{H}$ NMR, and mass spectrometry. The synthetic procedures are schematically outlined in Chart 1 . An alternative synthesis of a stretch of four consecutive Δ Ala residues by repetition of stepwise elongation of a Ser derivative and subsequent β-elimination has been reported by Shin and co-workers in connection with the synthesis of thiopeptide antibiotics. ${ }^{16 \mathrm{~d}, \mathrm{e}}$

Solution Conformational Analysis. The preferred conformation adopted by the terminally blocked $(\Delta \mathrm{Ala})_{n}(n=1-6)$ homopeptide series was determined in a solvent of low polarity $\left(\mathrm{CDCl}_{3}\right)$ by FTIR absorption and ${ }^{1} \mathrm{H}$ NMR techniques.

Figure 2 illustrates the FTIR absorption spectra in the conformationally informative $\mathrm{N}-\mathrm{H}$ stretching region. Using Mizushima's dilution technique, ${ }^{17 \mathrm{a}}$ we have been able to

[^4]

Figure 2. FTIR absorption spectra in the $\mathrm{N}-\mathrm{H}$ stretching region for the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}$-OMe $(n=1-6)$ homopeptides in CDCl_{3} solution. Peptide concentration, 1 mM .

Table 3. Chemical Shifts Values for the Amide/Peptide NH Proton Resonances of the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}$-OMe $(n=1-6)$ Homopeptides (1 mM Concentration in CDCl_{3} Solution)

	NH protons				
n		internal residues	N-terminal residue	C-terminal residue	
1				8.85	
2				8.96	
3			8.97	8.95	
4			8.85	8.48	
5		8.97	8.95	8.95	
6	8.97	8.95	8.95	8.95	

demonstrate that, at 1 mM concentration, intermolecular H bonding is negligible for all oligomers (not shown). At 1 mM concentration or below, a very weak band is seen at about 3450 cm^{-1} (free, solvated NH groups), followed for all oligomers by a broad and intense absorption centered in the 3405-3380-cm^{-1} region (weakly intramolecularly H -bonded NH groups). This latter spectral region is characteristic of the fully extended $\left(\mathrm{C}_{5}\right)$ peptide conformation. ${ }^{17 \mathrm{~b}, \mathrm{c}}$ As the peptide main-chain length is enhanced, (i) the frequency of the absorption maximum of the $3400-\mathrm{cm}^{-1}$ band tends to decrease slightly and (ii) the intensity of this band, relative to that of the $3450-\mathrm{cm}^{-1}$ band, tends to increase regularly. The effect of heating to $55^{\circ} \mathrm{C}$ does not alter the overall pattern (not shown).

The present FTIR absorption investigation has provided convincing evidence that intramolecular H-bonding of the $\mathrm{C}_{5}{ }^{-}$ type is the most important factor influencing the thermally stable conformation of $(\Delta \mathrm{Ala})_{n}$ homooligomers in CDCl_{3} solution.

To get more detailed information on the preferred conformation of the $(\Delta \mathrm{Ala})_{n}$ homooligomers in CDCl_{3} solution, we carried out a $400-\mathrm{MHz}^{1} \mathrm{H}$ NMR investigation. The delineation of inaccessible (or intramolecularly H-bonded) amide/peptide NH groups was performed by using (i) solvent dependence of NH chemical shifts by adding increasing amounts of the H -bonding acceptor solvent $\mathrm{DMSO}^{18 a}$ to the CDCl_{3} solution, (ii) free-radical TEMPO-induced line broadening of NH resonances, ${ }^{18 \mathrm{~b}}$ and (iii) temperature dependence of NH chemical shifts in CDCl_{3} solution. ${ }^{18 \mathrm{c}}$

A complete assignment has been achieved for the proton resonances of the monomer, dimer, and trimer by means of homonuclear decoupling and NOE experiments. A partial

[^5]Table 4. Chemical Shifts Values for the Vinyl $\mathrm{C}^{\beta} \mathrm{H}$ Proton Resonances of the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}$ - $\mathrm{OMe}(n=1-6)$ Homopeptides (1 mM Concentration in CDCl_{3} Solution)

Figure 3. (a) Plot of NH chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra of $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{6}-\mathrm{OMe}$ as a function of increasing percentages of DMSO added to the CDCl_{3} solution (v/v). (b) Plot of the bandwidths of the NH protons of the same homopeptide as a function of increasing percentages of the free radical TEMPO (w/v) in CDCl_{3} solution. (c) Plot of temperature coefficients for the amide NH protons of the same homopeptide in CDCl_{3} solution. Peptide concentration, 1 mM .
tentative assignment of the NH and vinyl $\mathrm{C}^{\beta} \mathrm{H}$ proton resonances of the N - and C -terminal $\Delta \mathrm{Ala}$ residues of the longer oligomers has been performed by analogy with the corresponding values for the shorter oligomers. From an analysis of the spectra of the more soluble oligomers (from monomer to tetramer) in the $10-1 \mathrm{mM}$ concentration range (results not shown), we have been able to conclude that dilution does not induce any significant shift of any of the proton resonances.

Tables 3 and 4 list the chemical shifts of the amide/peptide NH and vinyl $\mathrm{C}^{\beta} \mathrm{H}$ protons, respectively, for all oligomers in CDCl_{3} solution, while Figure 3 shows the effects of the added perturbing agents DMSO and TEMPO and heating on the NH resonances of the hexamer, selected as a typical example. An inspection of the values in Table 3 clearly indicates that all of the NH protons are at low fields compared to usual peptide NH protons and are of three different types: (i) the least deshielded peptide NH proton ($8.48-8.58 \mathrm{ppm}$) of the Cterminal residue at highest fields, (ii) the amide NH proton of the N -terminal residue at intermediate fields ($8.85-8.86 \mathrm{ppm}$), and (iii) a clustering of the most deshielded peptide NH protons of all of the internal residues in a very narrow range at lowest
fields ($8.95-8.97 \mathrm{ppm}$). On the other hand, there are two groups (50% each) of vinyl $\mathrm{C}^{\beta} \mathrm{H}$ protons (Table 4): (i) deshielded resonances ($6.65-6.80 \mathrm{ppm}$), which we assign to intramolecularly H-bonded $\mathrm{C}^{\beta} \mathrm{H}$ protons, and (ii) shielded resonances (5.506.04 ppm), which we assign to free $\mathrm{C}^{\beta} \mathrm{H}$ protons. Within the former group, the resonance corresponding to the N -terminal residue is that found at lowest fields, whereas within the latter group, the resonance corresponding to the C -terminal residue is that found at lowest fields.

Furthermore, from the data illustrated in Figure 3, it is evident that none of the proton NH chemical shifts is markedly sensitive to the addition of DMSO and heating, nor do their resonances broaden significantly upon addition of TEMPO. This behavior is characteristic of intramolecularly H -bonded NH protons.

Taken together, these ${ }^{1} \mathrm{H}$ NMR results fit nicely with the FTIR absorption data discussed above, in that a multiple, consecutive C_{5} conformation seems to largely prevail for all of the $(\Delta \mathrm{Ala})_{n}$ homooligomers in CDCl_{3} solution. In this conformation, all of the NH groups are intramolecularly H-bonded, whereas intermolecular H-bonds do not play a significant role, even at high concentrations. These fully extended structures appear to be further stabilized by intramolecular H -bonds involving one vinyl $\mathrm{C}^{\beta} \mathrm{H}$ proton from each residue as donor.

Crystal-State Conformational Analysis. The molecular structures of the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}$ - $\mathrm{OMe}(n=1-3)$ homopeptides with the atomic numbering schemes are illustrated in Figure 4. Average bond distances and bond angles characterizing the $\Delta \mathrm{Ala}$ residue are shown in Figure 5A,B. Relevant backbone torsion angles ${ }^{19}$ are presented in Table 5. In Table 6, the inter- and intramolecular H -bond parameters are listed.

Interestingly, in peptides from protein amino acids, where the α-carbon is sp ${ }^{3}$ hybridized, the $\mathrm{C}^{\alpha}-\mathrm{N}(1.45 \AA)$ and $\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}$ ($1.52 \AA$) bond lengths ${ }^{20}$ are significantly longer than those in Δ Ala peptides, as expected, since in the latter compounds a resonance effect with the $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}$ bond is operative. Furthermore, the bond angle at the nitrogen is much wider than the corresponding parameter in normal peptides, ${ }^{20}$ and the conformationally informative $\tau\left(\mathrm{N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}\right)$ bond angle ${ }^{20}$ is greatly narrowed compared to that typical of an sp^{2}-hybridized atom $\left(120^{\circ}\right)$. This latter finding may be considered a preliminary indication of the onset of the fully extended $\left(\mathrm{C}_{5}\right)$ structure ${ }^{3 \mathrm{~b}, 8}$ for the Δ Ala homooligomers in the crystal state.

The three peptides examined form single (monomer) or multiple and consecutive (dimer and trimer) fully extended (C_{5}) conformations. The resulting helical structure (2.0_{5}-helix) has been experimentally verified so far only in the terminally blocked (Deg) 2_{2-5} and (Dpg) $)_{2}$ (Deg, $\mathrm{C}^{\alpha, \alpha}$-diethylglycine; Dpg, $\mathrm{C}^{\alpha, \alpha}$-di- n-propylglycine) homooligomers. ${ }^{8}$ Thus, our ($\left.\Delta \mathrm{Ala}\right)_{n}$ dimer and trimer are the first 2.0_{5}-helical peptides not based on
(19) IUPAC-IUB Commission on Biochemical Nomenclature. J. Mol. Biol. 1970, 52, 1-17.
(20) Benedetti, E. In Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 6; Weinstein, B., Ed.; Dekker: New York, 1983; pp 105-184.

Figure 4. X-ray diffraction structures of (A) $p \mathrm{BrBz}-\Delta \mathrm{Ala}-\mathrm{OMe}$, (B) $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{2}-\mathrm{OMe}$, and $(\mathrm{C}) p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{3}-\mathrm{OMe}$ with numbering of the atoms. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}^{\prime}, \mathrm{C}^{\prime}=\mathrm{O} \cdots \mathrm{H}-\mathrm{C}^{\beta}$, and $\mathrm{C}^{\beta}-\mathrm{H} \cdots \mathrm{OT}$ intramolecular H-bonds are represented by dashed lines.

A

bond distances ($\stackrel{\circ}{\mathrm{A}}$)

N_{i} - $\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}_{i}$ H-bond (C_{5} conformation)

bond angles (${ }^{\circ}$)

(" C_{6} " conformation)

Figure 5. Average bond distances (A) and bond angles (B) for the Δ Ala residue and average parameters for the $\mathrm{N}_{i}-\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}^{\prime}{ }_{i}$ intramolecularly H -bonded C_{5} conformation (C), further stabilized by intramolecular $\mathrm{C}^{\beta}{ }_{i+1}-\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}^{\prime}{ }_{i} \mathrm{H}$-bonds (D), of the Δ Ala homopeptides.
C^{α}-tetrasubstituted α-amino acids. An additional interesting observation is that the $\Delta \mathrm{Ala}$ homooligomers are flat molecules, including the amino acid side chains. The dihedral angle between adjacent C_{5} rings is in the range $3.5-8.0^{\circ}$. This property is obviously not shared by the Deg and Dpg homooligomers. The average parameters for the C_{5} conformation in Δ Ala peptides are given in Figure 5C. Interestingly, the τ bond angle is greatly expanded compared to the corresponding bond angle for the C_{5} conformation of Deg and Dpg homooligomers (102-103 $) .{ }^{8}$ This difference may be explained, at least in part, on the basis of the different type of hybridization for the α-carbon atom (sp^{2}

Table 5. Selected Backbone Torsion Angles ${ }^{a}$ (deg) for the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}-\mathrm{OMe}(n=1-3)$ Homopeptides

torsion angle	monopeptide	dipeptide	tripeptide
ω_{0}	$-178.0(5)$	$175.7(6)$	$170.3(3)$
ϕ_{1}	$156.2(5)$	$179.5(7)$	$-178.2(3)$
ψ_{1}	$173.1(5)^{b}$	$-170.8(6)$	$-172.3(3)$
ω_{1}	$-179.5(5)^{c}$	$-169.7(7)$	$179.9(3)$
ϕ_{2}		$170.3(7)$	$-178.5(3)$
ψ_{2}		$178.5(6)^{b}$	$176.8(3)$
ω_{2}		$177.9(6)^{c}$	$172.6(3)$
ϕ_{3}			$-175.8(3)$
ψ_{3}			$-179.9(3)^{b}$
ω_{3}			$-178.8(3)^{c}$

${ }^{a}$ The torsion angles for rotation about bonds of the peptide backbone (ϕ, ψ, ω) are described in ref $19 .{ }^{b} \mathrm{~N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}-\mathrm{OT}$ torsion angle. ${ }^{c} \mathrm{C}^{\alpha}-$ $\mathrm{C}^{\prime}-\mathrm{OT}-\mathrm{CT}$ torsion angle.
in Δ Ala peptides, sp^{3} in Deg and Dpg peptides). The parameters characterizing the $\mathrm{N}_{i}-\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}_{i}^{\prime}$ intramolecular H-bond shown in Figure 5C should be compared to the corresponding ones in Deg and Dpg peptides: $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ distances 2.54 and $2.00 \AA$, respectively, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle $110.6^{\circ} .{ }^{8}$ Overall, it seems that the pentagonal ring of the C_{5} structure of $\Delta \mathrm{Ala}$ peptides would be somewhat more expanded than the analogous C_{5} ring structure of Deg and Dpg peptides.

The φ, ψ, ω backbone torsion angles are all very close to the trans disposition $\left(180^{\circ} \pm 10^{\circ}\right)$, as expected for a fully extended $\left(\mathrm{C}_{5}\right)$ conformation. ${ }^{3 \mathrm{~b}, 8}$ The only significant exception is represented by the φ_{1} torsion angle of the monomer, where the C_{5} structure seems to be slightly distorted. In the fully extended structure of the Δ Ala dimer and trimer, the $\mathrm{C}^{\alpha}{ }_{i} \cdots \mathrm{C}^{\alpha}{ }_{i+1}$ distance is $3.77 \AA$, while in the antiparallel pleated-sheet β-structure, 3_{10}-helix, and α-helix, this same distance is $3.47,1.94$, and 1.56 \AA, respectively. ${ }^{4}$

The structure of these peptides is further stabilized by $\mathrm{C}^{\beta}{ }_{i+1}-$ $\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}^{\prime}{ }_{i}$ intramolecular H-bonds. ${ }^{21 \mathrm{a}}$ The average parameters characterizing this hexagonal $\left(\mathrm{C}_{6}\right)$ ring structure are given in Figure 5D. An additional H-bond is observed between the C^{β} H 2 group of the C-terminal $\Delta \mathrm{Ala}$ residue and the OT oxygen atom of the methyl ester group. These findings closely parallel the ${ }^{1} \mathrm{H}$ NMR observations about the chemical shifts of the $\mathrm{C}^{\beta} \mathrm{H}$ protons in solution.

The most striking feature in the packing mode of these $\Delta \mathrm{Ala}$ homopeptides is their arrangement in planar, parallel layers, with an approximate interlayer separation of $3.30 \AA$ (for the trimer, see Figure 6A). There are no $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}^{\prime}$ intermolecular H -bonds, with the single exception of the monomer, in which the slight warping of the molecule allows the $\mathrm{N} 1-\mathrm{H}$ group to approach the $\mathrm{C}^{\prime} 0=\mathrm{O} 0$ group of a symmetry-related molecule in an adjacent layer, to form a H -bond of normal strength. ${ }^{21 \mathrm{~b}}$ To our knowledge, this unusual lack of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}^{\prime}$ intermolecular H-bonds is shared only by the 2.0_{5}-helix forming Deg and Dpg homopeptides. ${ }^{8}$ A significant contribution to the stability of the planar arrangement of the molecules might be ascribed to the intermolecular (aryl) $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}^{\prime}$ short contacts listed in Table 6 and illustrated for the tripeptide in Figure 6B. It has also to be mentioned that, in all of the three structures, the distances between the Br atoms of centrosymmetric pairs of molecules (within the same layer) are in the range 3.556(3) -3.681 (1) \AA, in which dispersion effects between the bromines may be operative.

[^6]Table 6. Intra- and Intermolecular H -Bond Parameters for the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{n}$ - $\mathrm{OMe}(n=1-3)$ Homopeptides

peptide	donor $\mathrm{D}-\mathrm{H}$	acceptor A	symmetry operation	distance (\AA) D \cdots A	distance (\AA) $\mathrm{H} \cdots \mathrm{A}$	angle (deg) $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
$p \mathrm{BrBz}-\Delta \mathrm{Ala}-\mathrm{OMe}$	N1-H	O1	x, y, z	2.687(7)	2.38	101
	$\mathrm{C}^{\beta} 1-\mathrm{H} 1$	O0	x, y, z	2.869 (7)	2.35	115
	$\mathrm{C}^{\beta} 1-\mathrm{H} 2$	OT	x, y, z	2.730 (8)	2.41	100
	N1-H	O0	$x, y, 1+z$	$3.005(6)$	2.31	139
	C2-H	O1	$-x, 2-y, 1-z$	$3.386(6)$	2.47	170
	C5-H	O0	$1-x, 2-y,-1-z$	$3.386(7)$	2.61	141
$p \mathrm{BrBz-}(\triangle \mathrm{Ala})_{2}-\mathrm{OMe}$	N1-H	O1	x, y, z	2.599 (8)	2.17	110
	N2-H	O2	x, y, z	2.624(8)	2.22	109
	$\mathrm{C}^{\beta} 1-\mathrm{H} 1$	O0	x, y, z	2.855(11)	2.25	122
	$\mathrm{C}^{\beta} 2-\mathrm{H} 1$	O1	x, y, z	2.910 (10)	2.32	121
	$\mathrm{C}^{\beta} 2-\mathrm{H} 2$	OT	x, y, z	2.737(10)	2.43	99
	C2-H	O0	$x, y, 1+z$	$3.147(8)$	2.50	127
$p \mathrm{BrBz-}(\triangle \mathrm{Ala})_{3}-\mathrm{OMe}$	N1-H	O1	x, y, z	2.596 (4)	2.16	111
	N2-H	O 2	x, y, z	2.583(4)	2.14	111
	N3-H	O3	x, y, z	2.624(4)	2.21	109
	$\mathrm{C}^{\beta} 1-\mathrm{H} 1$	O0	x, y, z	2.850 (5)	2.26	121
	$\mathrm{C}^{\beta} 2-\mathrm{H} 1$	O1	x, y, z	2.870(4)	2.27	122
	$\mathrm{C}^{\beta} 3-\mathrm{H} 1$	O2	x, y, z	2.895 (5)	2.30	121
	$\mathrm{C}^{\beta} 3-\mathrm{H} 2$	OT	x, y, z	$2.757(5)$	2.45	99
	$\mathrm{C} 2-\mathrm{H}$	O0	$x,-1+y, z$	3.075 (3)	2.40	129

Figure 6. Packing mode of the $p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{3}-\mathrm{OMe}$ molecules in the crystal as viewed (A) along the b direction and (B) along the a direction. For clarity, in the latter view, only the molecules belonging to two adjacent layers are shown with different bond thickness. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}^{\prime}$ contacts are represented by dashed lines.

Conclusions

The experimental results reported by other groups ${ }^{2,5-7}$ and in the present work strongly support the view that γ-branched Δ AAs (Δ^{Z} Phe and Δ^{Z} Leu) are very effective β-turn $/ 3_{10}$-helix formers, whereas $\Delta \mathrm{Ala}$, with no C^{β}-substituents, behaves quite differently, overwhelmingly preferring the fully extended ($2.0_{5^{-}}$ helical) conformation. Steric effects that might cause warping of a C^{β}-substituted $\Delta \mathrm{AA}$ peptide main chain are absent in $\Delta \mathrm{Ala}$ peptides. Thus, these findings emphasize the need for carefully taking into account C^{β}-substitution in $\triangle \mathrm{AAs}$ for a correct peptide design. It still remains to be seen whether longer Δ Ala stretches would fold into the 3_{10}-helical structure, as suggested by recent theoretical studies. ${ }^{9 a-c}$

Exciting, new features of Δ Ala fully extended peptides are the following. (i) These molecules are flat, including the amino acid side chains. (ii) The molecules pack in layers, without any significant contribution from intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{CH}$ bonds. (iii) The average intramolecular $\mathrm{C}^{\alpha}{ }_{i} \cdots \mathrm{C}^{\alpha}{ }_{i+1}$ distance ($3.77 \AA$) is the largest known separation of this type for any peptide structure experimentally found to date. (iv) This novel peptide structure is stabilized by two types of intramolecular H-bonds, $\mathrm{N}_{i}-\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}^{\prime}{ }_{i}$, involving all of the NH groups of the molecule and typical of the five-membered ring C_{5} form, and $\mathrm{C}^{\beta_{i+1}}-\mathrm{H} \cdots \mathrm{O}_{i}=\mathrm{C}_{i}^{\prime}$, characteristic of Δ Ala peptides and giving rise to a six-membered ring system. In this connection, it is gratifying to note that the structure found in the crystal state corresponds to the most populated conformation in a poorly interacting solvent such as deuteriochloroform.

In summary, in the present conformational study of $(\Delta \mathrm{Ala})_{1-6}$ homopeptides, we have identified for the first time a completely flat peptide structure. For these striking planar peptide sheets, we foresee a bright future in biochemical and materials science applications.

Acknowledgment. M.C., F.F., and C.T. are grateful to the Ministry of University and Technological Research (M.U.R.S.T.) and the National Research Council (C.N.R.) of Italy for their continuous and generous support of this research.

Supporting Information Available: Experimental details for the synthesis and characterization of peptides, and tables of crystal data and structure refinement, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, anisotropic displacement parameters, hydrogen coordinates and isotropic displacement parameters, and selected torsion angles for $p \mathrm{BrBz}-\Delta \mathrm{Ala}-\mathrm{OMe}, p \mathrm{BrBz}-(\Delta \mathrm{Ala})_{2}-\mathrm{OMe}$, and $p \mathrm{BrBz}-$ ($\triangle \mathrm{Ala})_{3}$-OMe (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9842114

[^0]: * Address correspondence to Prof. Claudio Toniolo, Department of Organic Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy. Tel.: +39-049-827-5247. Fax: +39-049-827-5239. E-mail: biop02@ chor.unipd.it.

 University of Padova.
 ${ }^{\dagger}$ Kinki University.
 (1) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173-180. (b) Toniolo, C.; Yoshikawa, S. Biopolymers (Pept. Sci.) 1998, 47, 3-4.
 (2) (a) Singh, T. P.; Narula, P.; Patel, H. C. Acta Crystallogr. 1998, B46, 539-545. (b) Singh, T. P.; Kaur, P. Prog. Biophys. Mol. Biol. 1996, 66, 141-165. (c) Jain, R.; Chauhan, V. S. Biopolymers (Pept. Sci.) 1996, 40, 105-119.
 (3) (a) Venkatachalam, C. M. Biopolymers 1968, 6, 1425-1436. (b) Toniolo, C. CRC Crit. Rev. Biochem. 1980, 9, 1-44. (c) Rose, G. D.; Gierasch, L. M.; Smith, J. A. Adv. Protein Chem. 1985, 37, 1-109.
 (4) Toniolo, C.; Benedetti, E. Trends Biochem. Sci. 1991, 16, 350-353.
 (5) Ramagopal, U. A.; Ramakumar, S.; Joshi, R. M.; Chauhan, V. S. J. Pept. Res. 1998, 52, 208-215.
 (6) (a) Ongania, K. H.; Granozzi, G.; Busetti, V.; Casarin, M.; Ajò, D. Tetrahedron 1985, 41, 2015-2018. (b) Pietrzynski, G.; Rzeszotarska, B.; Ciszak, E.; Lisowski, M.; Kubica, Z.; Boussard, G. Int. J. Pept. Protein Res. 1996, 48, 347-356. (c) Lombardi, A.; D'Agostino, B.; Nastri, F.; D'Andrea, L. D.; Filippelli, A.; Falciani, M.; Rossi, F.; Pavone, V. Bioorg. Med. Chem. Lett. 1998, 8, 1153-1156.

[^1]: (7) Broda, M. A.; Rzeszotarska, B.; Smelka, L.; Rospenk, M. J. Pept. Res. 1997, 50, 342-351.
 (8) Toniolo, C.; Benedetti, E. In Molecular Conformation and Biological Interactions: G. N. Ramachandran Festschrift; Balaram, P., Ramaseshan, S., Eds.; Indian Institute of Science: Bangalore, India, 1991; pp 511-521.
 (9) (a) Aleman, C. Biopolymers 1993, 33, 1811-1817. (b) Aleman, C. Biopolymers 1994, 34, 841-847. (c) Fabian, P.; Chauhan, V. S.; Pongor, S. Biochim. Biophys. Acta 1994, 1208, 89-93. (d) Jezowska-Bojczuk, M.; Varnagy, K.; Sovago, I.; Pietrzynski, G.; Dyba, M.; Kubica, Z.; Rzeszotarska, B.; Smelka, L.; Kozlowski, H. J. Chem. Soc., Dalton Trans. 1996, 3265-3268. (e) Cativiela, C.; Garcia, J. I.; Mayoral, J. A.; Salvatella, L. J. Mol. Struct. (THEOCHEM) 1996, 368, 57-66. (f) Rao, G. S.; Siddiqui, M. I.; Arora, S. J. Biomol. Struct. Dyn. 1996, 14, 21-24. (g) Rao, G. S.; Arora, S.; Kataria, S. J. Biomol. Struct. Dyn. 1998, 15, 1053-1058. (h) Thormann, M.; Hofmann, H. J. J. Mol. Struct. (THEOCHEM) 1998, 431, 79-96. (i) Broda, M. A.; Rzeszotarska, B. Lett. Pept. Sci. 1998, 5, 441443.

[^2]: (10) Toniolo, C.; Formaggio, F.; Crisma, M.; Yoshikawa, T.; Wakamiya, T. In Proceedings of the First International Peptide Symposium; Shimonishi, Y., Ed.; Kluwer: Dordrecht, The Netherlands, 1999 (in press).
 (11) (a) Stammer, C. H. In Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 6; Weinstein, B., Ed.; Dekker: New York, 1982; pp 33-74. (b) Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1988, 159-172.
 (12) Fate, G. D.; Benner, C. P.; Grode, S. H.; Gilbertson, T. J. J. Am. Chem. Soc. 1996, 118, 11363-11368.
 (13) Langer, M.; Lieber, A.; Rétey, J. Biochemistry 1994, 33, 1403414038.

[^3]: (16) (a) Nomoto, S.; Sano, A.; Shiba, T. Tetrahedron Lett. 1979, 521522. (b) Ben-Ishai, D.; Berger, A. J. Org. Chem. 1982, 17, 1564-1570. (c) Chen, F. C. M.; Benoiton, N. L. Can. J. Chem. 1976, 54, 3310-3311. (d) Shin, C.; Okumura, K.; Ito, A.; Nakamura, Y. Chem. Lett. 1994, 13011304. (e) Okumura, K.; Ito, A.; Nakamura, Y.; Shin, C. Bull. Chem. Soc. Jpn. 1996, 69, 2309-2316.

[^4]: (17) (a) Mizushima, S.; Shimanouchi, T.; Tsuboi, M.; Souda, P. J. Am. Chem. Soc. 1952, 74, 270-271. (b) Cung, M. T.; Marraud, M.; Néel, J. Ann. Chim. 1972, 7, 183-209. (c) Toniolo, C.; Pantano, M.; Formaggio, F.; Crisma, M.; Bonora, G. M.; Aubry, A.; Bayeul, D.; Dautant, A.; Boesten, W. H. J.; Schoemaker, H. E.; Kamphuis, J. Int. J. Biol. Macromol. 1994, 16, 7-14.

[^5]: (18) (a) Kopple, K. D.; Ohnishi, M. Biochemistry 1969, 8, 4087-4095. (b) Kopple, K. D.; Schamper, T. J. J. Am. Chem. Soc. 1972, 94, 36443646. (c) Bonora, G. M.; Mapelli, C.; Toniolo, C.; Wilkening, R. R.; Stevens, E. S. Int. J. Biol. Macromol. 1984, 6, 179-188.

[^6]: (21) (a) Fabiola, G. F.; Krishnaswamy, S.; Nagarajan, V.; Pattabhi, V. Acta Crystallogr. 1997, D53, 316-320. (b) Görbitz, C. H. Acta Crystallogr. 1989, B45, 390-395.

